Variation of current protocols for managing out-of-hospital cardiac arrest in prehospital settings among Asian countries

Chih-Hao Lin a,*, Yih Yng Ng b, Wen-Chu Chiang c, Sarah Abdul Karim d, Sang Do Shin e, Hideharu Tanaka f, Tatsuya Nishiuchi g, Kentaro Kajino h, Nalinas Khunkhlai i, Matthew Huei-Ming Ma c, Marcus Eng Hock Ong j

a Department of Emergency Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
b Medical Department, Singapore Civil Defense Force, Singapore
c Department of Emergency Medicine, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
d Department of Emergency Medicine, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
e Department of Emergency Medicine, Seoul National University College of Medicine, Seoul, South Korea
f Department of Emergency System, Kokushikan University Graduate School of Sport System, Tokyo, Japan
g Department of Acute Medicine, Kinki University Faculty of Medicine, Osaka-Sayama, Japan
h Traumatology and Critical Care Medical Center, National Hospital Organization Osaka National Hospital, Osaka, Japan
i Department of Emergency Medicine, Rajavithi Hospital, Bangkok, Thailand
j Department of Emergency Medicine, Singapore General Hospital, Singapore

Received 28 July 2015; received in revised form 8 October 2015; accepted 12 October 2015

KEYWORDS
Out-of-hospital
Cardiac Arrest;
Prehospital;
Protocol

Background/Purpose: Protocols for managing patients with out-of-hospital cardiac arrest (OHCA) may vary due to legal, cultural, or socioeconomic concerns. We sought to assess international variation in policies and protocols related to OHCA.

Methods: A brief survey was developed by consensus. Elicited information included protocols for managing patients with nontraumatic OHCA or traumatic OHCA, policies for using automated

* Corresponding author. Department of Emergency Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Number 138, Shengli Road, North District, Tainan City, 70403, Taiwan, ROC.
E-mail address: emergency.lin@gmail.com (C.-H. Lin).

http://dx.doi.org/10.1016/j.jfma.2015.10.003
0929-6646/Copyright © 2015, Formosan Medical Association. Published by Elsevier Taiwan LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Out-of-hospital cardiac arrest (OHCA) is a global concern. OHCA is estimated to affect 0.1% of the general population, approximately 60% of which is assessed by emergency medical services (EMS). Evidence indicates that early defibrillation and uninterrupted chest compression are associated with better outcome. Based on this concept, optimal delivery of resuscitation efforts on scene, rather than performing inadequate cardiopulmonary resuscitation (CPR) in a moving ambulance and rushing to the nearest emergency department (ED), is believed to improve outcomes for OHCA patients. In addition, it is recognized that CPR efforts are futile for certain subsets of OHCA patients, giving rise to the need for field termination of resuscitation (TOR) rules for EMS providers.

Field TOR reduces unnecessary transport to the hospital, thus decreasing the associated road hazards and improving availability of EMS and ED resources for patients with a higher chance of survival. The American Heart Association (AHA), the International Liaison Committee on Resuscitation (ILCOR), and the European Resuscitation Council have developed guidelines for ethical and evidence-based TOR rules in the prehospital setting. However, the adherence rate to AHA guidelines at the local EMS level in the United States is low.

Sasson et al conducted focus-group interviews to identify barriers to local implementation of national AHA guidelines for TOR. The adoption of TOR rules in the EMS system may be hindered by medical, socioeconomic, or legal concerns. Asia-Pacific countries have unique cultures, health care and EMS systems, which are different from European or Anglo-American models. Since EMS utilization is rapidly growing in Asia, we conducted this study to investigate current protocols of managing patients with OHCA and field TOR applications among Asian countries.

Methods

Study design and sample

We conducted a three-phase qualitative survey at the Pan Asian Resuscitation Outcomes Study (PAROS) meetings. PAROS represents a recently organized collaborative in the Asia-Pacific area to optimize outcomes of OHCA. There were six countries and eight cities in the PAROS group during the survey period. All of the participating cities have city-based EMS systems. PAROS has academic meetings at least twice a year.

The first phase was implemented in May 2011 at the Seoul meeting. A group discussion was conducted to formalize the survey. The definition of terms used in this study was discussed and was standardized by consensus. A web-based questionnaire was distributed to each representative. The characteristics of each EMS site were obtained in this phase, including the status of do-not-resuscitate (DNR) orders were valid in prehospital settings in the respondent’s city or country. The populations of interest were emergency physicians, medical directors of emergency medical services (EMS), and policy makers.

Results: Responses were obtained from eight cities in six Asian countries. Only one (12.5%) city applied TOR rules for OHCA. Do-not-resuscitate (DNR) orders were valid in prehospital settings in five (62.5%) cities. All cities used AEDs for nontraumatic OHCAs; seven (87.5%) cities did not routinely use AEDs for traumatic OHCAs. For nontraumatic OHCAs, four (50%) cities performed 2 minutes of on-scene cardiopulmonary resuscitation (CPR) and then transported the patients with ongoing resuscitation to hospitals; three (37.5%) cities performed 4 minutes of on-scene CPR; one (12.5%) city allowed variation in the duration of on-scene CPR.

Conclusion: International variation in practices and polices related to OHCAs do exist. Concerns regarding prehospital TOR rules include medical evidence, legal considerations, EMS manpower, public perception, medical oversight, education, EMS characteristics, and cost-effectiveness analysis. Further research is needed to achieve consensus regarding management protocols, especially for EMS that perform resuscitation during transportation of OHCA patients.
not-resuscitate (DNR) orders in the hospital setting and in the prehospital setting, CPR exemption if obvious signs of death exist, EMS protocols for treating patients with OHCA, and EMS application of TOR rules. We focused on protocols of basic life support (BLS) management plus AED use for treating OHCA. In order to avoid complexity, we did not include advanced life support (ALS) management in this survey, such as advanced airway procedures or medication administration. The results of the second phase were then reviewed and were clarified by each representative.

The final phase was conducted using a web-based survey with open-ended questions. The representatives replied via e-mail to identify the major barriers to adopting TOR rules in their own EMS systems. The representatives were also asked to provide their opinions on how to improve the situation. In this phase, we preferred written feedback, instead of oral interviews, to allow the representatives more time to ruminate on their responses. The response from each representative was independent in order to avoid shared information bias. Responses were reviewed in April 2013 at the Singapore meeting. The characteristics of each EMS site were updated using the data from 2011.

**Ethics**

The PAROS research committee approved the study. No financial incentives were offered to the participants. This study was reviewed with exemption and was approved by the Institutional Review Board of National Cheng Kung University Hospital, Tainan, Taiwan.

**Results**

**Survey responses**

Individuals from the PAROS group from eight cities in six countries participated in the survey. The eight participating cities included Bangkok (Thailand), Kuala Lumpur (Malaysia), Osaka (Japan), Tokyo (Japan), Seoul (Korea), Singapore (Singapore), Tainan (Taiwan), and Taipei (Taiwan). The representatives of the EMS sites are listed in the authorship of this manuscript.

**The characteristics of EMS sites**

The characteristics of each EMS unit are shown in Table 1. The populations of interest were emergency physicians or EMS medical directors of the region. We identified these individuals on the basis of scientific publications related to OHCA, service on local EMS, or personal expertise. The participating sites and the corresponding representatives were identified. All representatives were medical directors involved in the development and implementation of local EMS policies and protocols. We contacted the representatives identified by the research committee and all of them consented to this survey.

**Cities and countries**

In order to give a more diverse representation of medical practices, we sought participation from as many cities and Asian countries as possible. The primary focus was on cities with an EMS infrastructure of medical direction and regular updates of protocols.

**Verbalism**

The survey questions and responses were all in English. The survey conductors and respondents were familiar with medical terms and communications in English. The responses and interview contents were emailed back to the respondents individually for clarification and confirmation.

**Data collection and analysis**

Survey responses were collected and then analyzed using the software Microsoft Office Excel (version 2010; Microsoft Corp., Redmond WA, USA).
Table 1  Characteristics of emergency medical services systems in the year 2011.

<table>
<thead>
<tr>
<th>EMS unit (city-based)</th>
<th>Bangkok</th>
<th>Kuala Lumpur</th>
<th>Osaka</th>
<th>Tokyo</th>
<th>Seoul</th>
<th>Singapore</th>
<th>Tainan</th>
<th>Taipei</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
<td>Thailand</td>
<td>Malaysia</td>
<td>Japan</td>
<td>Japan</td>
<td>Korea</td>
<td>Singapore</td>
<td>Taiwan</td>
<td>Taiwan</td>
</tr>
<tr>
<td>Urbanization</td>
<td>Urban</td>
<td>Urban</td>
<td>Urban plus suburban</td>
<td>Urban plus suburban</td>
<td>Urban</td>
<td>Urban plus rural</td>
<td>Urban</td>
<td>Urban</td>
</tr>
<tr>
<td>Population (millions)</td>
<td>10.1</td>
<td>1.6</td>
<td>2.7</td>
<td>13</td>
<td>10.4</td>
<td>5.3</td>
<td>1.9</td>
<td>2.7</td>
</tr>
<tr>
<td>Territory (km²)</td>
<td>1568</td>
<td>243</td>
<td>223</td>
<td>2187</td>
<td>605</td>
<td>710</td>
<td>2191</td>
<td>272</td>
</tr>
<tr>
<td>Population density (1000/km²)</td>
<td>6.4</td>
<td>6.7</td>
<td>12</td>
<td>5.9</td>
<td>17.3</td>
<td>7.5</td>
<td>0.9</td>
<td>9.8</td>
</tr>
<tr>
<td>EMS response time, min (mean ± SD)</td>
<td>13.5 ± 6.6</td>
<td>24.0 ± 11.0</td>
<td>7.4±</td>
<td>7.2 ± 3.2</td>
<td>5.7 ± 3.5</td>
<td>8.2 ± 3.7</td>
<td>6.0 ± 7.7</td>
<td>6.4 ± 3.3</td>
</tr>
<tr>
<td>EMS transport time min (mean ± SD)</td>
<td>12.5 ± 8.3</td>
<td>NA</td>
<td>28.6±</td>
<td>20.4 ± 7.8</td>
<td>7.4 ± 4.8</td>
<td>16.4 ± 24.0</td>
<td>9.0 ± 6.8</td>
<td>4.5 ± 2.8</td>
</tr>
<tr>
<td>No. of patients assessed by EMS per y</td>
<td>36,362</td>
<td>17,581</td>
<td>214,953</td>
<td>640,193</td>
<td>295,699</td>
<td>142,549</td>
<td>72,010</td>
<td>98,300</td>
</tr>
<tr>
<td>No. of OHCA assessed by EMS per y</td>
<td>NA</td>
<td>1084</td>
<td>1600</td>
<td>12,851</td>
<td>4179</td>
<td>1761</td>
<td>1468</td>
<td>3072</td>
</tr>
<tr>
<td>Highest service level</td>
<td>Physician</td>
<td>Physician assistant or nurse</td>
<td>EMT-intermediate Fire department</td>
<td>EMT-intermediate Fire department</td>
<td>EMT-intermediate Fire department</td>
<td>EMT-intermediate Fire department</td>
<td>EMT-paramedic Fire department</td>
<td>EMT-paramedic Fire department</td>
</tr>
<tr>
<td>Operation of ambulance</td>
<td>Hospital</td>
<td>Mixture of hospital-based, civil defense, &amp; nonprofit organizations</td>
<td>Hospital</td>
<td>Hospital</td>
<td>Hospital</td>
<td>Hospital</td>
<td>Hospital</td>
<td>Hospital</td>
</tr>
<tr>
<td>Finance</td>
<td>Free, &amp; tax based</td>
</tr>
<tr>
<td>Tiered response</td>
<td>BLS plus ALS</td>
<td>BLS or ALS single</td>
<td>BLS single</td>
<td>BLS single</td>
<td>BLS single</td>
<td>BLS single</td>
<td>BLS plus ALS</td>
<td>BLS plus ALS</td>
</tr>
</tbody>
</table>

ALS = advanced life support; BLS = basic life support; EMS = emergency medical service; EMT = emergency medical technician; NA = not available; No. = number; OHCA = out-of-hospital cardiac arrest; SD = standard deviation.  

a SD is not available.  
b Only witnessed-OHCA.
<table>
<thead>
<tr>
<th>EMS unit (city-based)</th>
<th>Bangkok</th>
<th>Kuala Lumpur</th>
<th>Osaka</th>
<th>Tokyo</th>
<th>Seoul</th>
<th>Singapore</th>
<th>Tainan</th>
<th>Taipei</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid DNR order in the hospital setting</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Valid DNR order in the prehospital setting</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CPR is exempted if obvious signs of death are presented</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Protocols for nontraumatic OHCA</td>
<td>Performing CPR on scene for 2 min along with AED use &amp; then transport to the hospital with ongoing CPR in the ambulance</td>
<td>Performing CPR on scene for 15 min along with AED use &amp; then transport to the nearest hospitals with ongoing CPR in the ambulance if ROSC or defibrillation</td>
<td>Performing CPR on scene for 4 min along with AED use &amp; then transport to the nearest hospitals with ongoing CPR in the ambulance</td>
<td>Performing CPR on scene for varying duration along with AED use &amp; then transport to the nearest hospitals with ongoing CPR in the ambulance</td>
<td>Performing CPR on scene for 2 min along with AED use &amp; then transport to the nearest hospitals with ongoing CPR in the ambulance</td>
<td>Performing CPR on scene for 4 min along with AED use &amp; then transport to the nearest hospitals with ongoing CPR in the ambulance</td>
<td>Performing CPR on scene for 2 min along with AED use &amp; then transport to the nearest hospitals with ongoing CPR in the ambulance</td>
<td>Performing CPR on scene for 2 min along with AED use &amp; then transport to the nearest hospitals with ongoing CPR in the ambulance</td>
</tr>
<tr>
<td>Protocols for traumatic OHCA</td>
<td>Performing CPR on scene for 2 min without AED use &amp; then transport to the nearest hospitals with ongoing CPR in the ambulance</td>
<td>No CPR</td>
<td>Performing CPR on scene for 4 min without AED use &amp; then transport to the nearest hospitals with ongoing CPR in the ambulance</td>
<td>Performing CPR on scene for 4 min without AED use &amp; then transport to the nearest hospitals with ongoing CPR in the ambulance</td>
<td>Performing CPR on scene for 2 min without AED use &amp; then transport to the nearest hospitals with ongoing CPR in the ambulance</td>
<td>Performing CPR on scene for 4 min without AED use &amp; then transport to the nearest hospitals with ongoing CPR in the ambulance</td>
<td>Performing CPR on scene for 2 min without AED use &amp; then transport to the nearest hospitals with ongoing CPR in the ambulance</td>
<td>Performing CPR on scene for 2 min without AED use &amp; then transport to the nearest hospitals with ongoing CPR in the ambulance</td>
</tr>
<tr>
<td>Application of TOR rules in nontraumatic OHCA</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
All participating sites provide CPR and apply AEDs for patients with nontraumatic OHCA and then transport the patients to the designated hospitals with ongoing CPR in the ambulance during transportation. However, the on-scene CPR protocols vary in different sites. For nontraumatic OHCA, four (50.0%) cities perform 2 minutes of CPR on-scene before transporting the patients to hospitals, and three (37.5%) cities perform 4 minutes of CPR. Duration of on-scene CPR efforts provided by EMTs in Seoul is determined by EMS response time.

For patients with traumatic OHCA, the EMS protocol in Kuala Lumpur does not initiate on-scene CPR; the EMS systems of the remaining seven (87.5%) cities provide some on-scene CPR efforts. Seven (87.5%) cities, which include Bangkok, Kuala Lumpur, Osaka, Tokyo, Tainan, Seoul, and Singapore, do not routinely use AEDs for patients with traumatic OHCA. The AED use for traumatic OHCA is mandatory in Taipei.

Prehospital TOR rules are applicable for patients with OHCA in only one (12.5%) city. In Kuala Lumpur, ALS providers may terminate on-scene resuscitation efforts if the patient with OHCA neither achieves return of spontaneous circulation (ROSC) nor has a shockable rhythm after 15 minutes of CPR, but there is no protocol of TOR for BLS providers. While in Bangkok, ambulance physicians may terminate on-scene resuscitation efforts according to clinical judgment; however, no documented rule of TOR exists.

Adopting prehospital TOR rules

The obstacles of adopting field TOR rules in the EMS sites are summarized in Table 3. The major concerns and possible strategies for applying prehospital TOR rules in each city were coded as medical evidence, legal consideration, EMS manpower, public perception, medical oversight, EMT education, EMS characteristics, and cost-effectiveness analysis.

Discussion

There are wide variations in local regulations and practices regarding management of patients with OHCA in the prehospital setting among Asian countries. Though differences were observed between the EMS agencies in Western communities, the unique characteristics of Asian societies deserve elaborating upon.

Almost all EMS systems in this survey use a policy of “resuscitation during transportation” since TOR rules are rarely practiced among Asian societies. The protocols in most survey cities request EMS providers to deliver CPR on-scene for a certain duration before transporting the patients with OHCA to hospitals. In Seoul, the duration of on-scene CPR provided by EMTs was dependent on the length of the EMS response time. However, the protocol in Seoul was amended in 2014 so that EMTs perform on-scene CPR for at least 5 minutes for patients with either traumatic or nontraumatic OHCA, regardless of the length of EMS response time.
<table>
<thead>
<tr>
<th>EMS unit (city-based)</th>
<th>Bangkok</th>
<th>Kuala Lumpur</th>
<th>Osaka</th>
<th>Tokyo</th>
<th>Seoul</th>
<th>Singapore</th>
<th>Tainan</th>
<th>Taipei</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Medical evidence</strong></td>
<td>Lack of validation of TOR rules in Asian EMS systems</td>
<td>Medical evidence is not strong enough</td>
<td>Unmentioned</td>
<td>Unmentioned</td>
<td>Using short-term outcomes like survival to discharge may overestimate TOR adequateness; longer follow up for neurologic performance may be needed to generate proper TOR guidelines</td>
<td>Unmentioned</td>
<td>Unmentioned</td>
<td>Lack of validation of TOR in Asia EMS system. New interventions (such as ECMO, hypothermia therapy, or mechanical CPR devices) may improve outcome.</td>
</tr>
<tr>
<td><strong>Medical oversight</strong></td>
<td>Unmentioned</td>
<td>Absence of national consensus on TOR for BLS providers</td>
<td>Unmentioned</td>
<td>Lack of medical direction committee</td>
<td>Ambiguousness of EMS protocols for patients with OHCA</td>
<td>Unmentioned</td>
<td>Unmentioned</td>
<td>Unmentioned</td>
</tr>
<tr>
<td><strong>EMS characteristics</strong></td>
<td>Unmentioned</td>
<td>System is maintained by hospital-based providers with proper organizational structure, oversight &amp; protocol. System also has another nonhospital based provider that is mainly focused on providing first responder service with minimal organizational medical oversight</td>
<td>Unmentioned</td>
<td>Unmentioned</td>
<td>Advanced medical care in hospitals at the early postarrest phase may be beneficial for patients with OHCA because the EMS transport time is relatively short</td>
<td>Unmentioned</td>
<td>Unmentioned</td>
<td>EMS transport time in Asia EMS system is relatively short</td>
</tr>
<tr>
<td><strong>EMS manpower</strong></td>
<td>Unmentioned</td>
<td>Lack of ambulance &amp; manpower, may delay response time</td>
<td>Unmentioned</td>
<td>Unmentioned</td>
<td>Not enough EMT to perform ALS-TOR</td>
<td>Not enough EMT to perform ALS-TOR</td>
<td>Unmentioned</td>
<td>Unmentioned</td>
</tr>
<tr>
<td><strong>EMT education</strong></td>
<td>Unmentioned</td>
<td>Absence of standardization on</td>
<td>Unmentioned</td>
<td>Unmentioned</td>
<td>EMT education consistency in</td>
<td>Unmentioned</td>
<td>Unmentioned</td>
<td>Unmentioned</td>
</tr>
<tr>
<td>Legal consideration</td>
<td>Authorities unaware of the importance of TOR</td>
<td>the education requirements for EMS providers</td>
<td>Applying protocols by EMTs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------------------------------</td>
<td>---------------------------------</td>
<td>-------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unmentioned</td>
<td>Lack of national consensus &amp; legislation for TOR rules</td>
<td>Unmentioned</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public perception</td>
<td>Unmentioned</td>
<td>Lack of legislation for TOR rules</td>
<td>Unmentioned</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Local social norms are acceptable; should be adhered to local practice</td>
<td>Public unawareness of pre-existing DNR orders</td>
<td>Unmentioned</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Public concerns of making rules for terminal care is generally high</td>
<td>Family acceptance of field TOR is generally low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Public perception is overoptimistic for outcomes of patients with OHCA; lack of confidence in EMT expertise. Family may overrule existing DNR orders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost-effectiveness analysis</td>
<td>Lack of cost-effectiveness analysis</td>
<td>Unmentioned</td>
<td>Unmentioned</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unmentioned</td>
<td>Unmentioned</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ALS = advanced life support; BLS = basic life support; DNR = do-not-resuscitate; ECMO = extracorporeal membrane oxygenation; EMS = emergency medical service; EMT = emergency medical technician; OHCA = out-of-hospital cardiac arrest; TOR = termination of resuscitation.
response time, unless there were obvious signs of death. The optimal duration of on-scene CPR is still unknown.24

All survey cities use AEDs for nontraumatic OHCA. However, for traumatic OHCA, most cities do not routinely use AEDs. The survey finding is congruent with the current opinion that use of AED is not associated with better outcomes for traumatic OHCA.25

CPR is exempted in all survey sites when there are obvious signs of death. Kuala Lumpur is the only city with an adapted TOR rule for OHCA in this survey. The representative mentioned that TOR is a relatively acceptable social norm in Kuala Lumpur. The presence of hospital personnel at the scene may strengthen public trust since the highest service level of EMS provider in Bangkok and Kuala Lumpur is a physician. By comparison, public concern regarding TOR is higher in all the other survey cities without physicians. The association between public acceptance of TOR and religion or socioeconomic status remains unclear.

The quality of CPR in a moving ambulance is generally considered inadequate.26–29 In a video recording and time-motion analysis, frequent interruptions of CPR as well as poor CPR quality were observed during ambulance transportation.26 Current prehospital TOR rules are not widely validated for the practice of ongoing CPR in an ambulance. Recent studies also suggested that the misclassification rates of TOR rules were more than 1% in all provider combinations in Tokyo and Taipei.30,31 None of them achieved the expected standards for medical futility, that is, <1% chance of survival of a given treatment. The results were inconsistent with studies carried out in North American and European sites, where the misclassified rates for TOR rules ranged from 0% to 0.5%.30,31

Some Asian cities are highly populated and the medical resources are relatively concentrated. ALS techniques such as extracorporeal membrane oxygenation are generally available in the EDs of tertiary care hospitals in many Asian cities.32 The response time of EMS and the transport time from scene to hospitals in Asian cities are generally much shorter than in Western cities.19 The EMS characteristics may have significant impact on the predictability of TOR rules on OHCA’s outcome. Local observation in Japan and Taiwan demonstrated an increase in neurologically favorable survival when patients without field ROSC were transported to tertiary care hospitals. Given similar overall survival and assumption of better survival for shockable rhythms versus nonshockable rhythms, the findings of current research may infer that patients with nonshockable rhythms who would have been predicted dead by current TOR rules derived from the Western community, survived in some Asian communities. This translates to lower accuracy of TOR rules in this subgroup of patients.30,31

Asian societies have long debates on terminal and hospice care. When a patient approaches the end of life, physicians are more likely to follow the family members’ decisions rather than the patient’s as “the family settles the final things”. Respondents urged the need to illustrate outcomes of OHCA in a simplistic manner, as public awareness of patient outcome is generally unrealistic. Most people are not aware that survival from OHCA with intact neurological function is the exception rather than the norm.

In some countries, such as Japan, physicians are not directly involved in medical direction in most EMS, which make it difficult to integrate latest medical evidence into EMS protocols. Some respondents also expressed the concerns of medical-legal issues. Authorities could be unaware of the importance of TOR. National consensus and legislation for TOR rules were lacking. National health authorities should be encouraged to explore this issue. Further research is also needed to validate TOR rules.

The majority of EMS manpower in most cities is EMT-intermediate, which is inadequate to run the entire Advanced Cardiac Life Support (ACLS) protocol in the field. In most of the survey cities, an ambulance team responding to an OHCA call consists of only one paramedic and one to two EMT-intermediates.19,32,33 The ability to provide adequate prehospital ALS level care is limited; for BLS care delivered by EMT-intermediates, there are also concerns about terminating resuscitation after attempting only BLS measures such as laryngeal mask airways and administering only adrenaline.30,31

Transporting all patients with OHCA to hospitals could burden both EMS systems and hospitals. Patients with unfavorable neurological outcomes could devastate their families financially and emotionally. Since only a few patients with OHCA survive to hospital discharge with favorable neurological outcomes, cost-effectiveness analysis of current EMS protocols should be conducted.16,17,30,31

Developing the paramedic system towards operationalization of full EMT-Paramedic (EMT-P) capability can be considered if the organization is keen to provide full-ALS level care in the prehospital setting, including applying TOR rules. However, the consistency in applying the proper standards by the paramedic teams should be monitored closely.16,30,31 The processes needed to manage the administration of a dead body should be incorporated in EMS protocols. If the paramedic team terminates the resuscitation in the field, the protocols should include the following: coordination with the doctors for death certification, coordination to transport the body, psychological surveillance of EMTs/bystanders/first responders, and other administrative considerations.

This study has several limitations. Firstly, it was a convenience sample of respondents selected on the basis of their knowledge and involvement in the practices in their cities. Secondly, the survey was conducted in English, which is not the native language used in most of the survey cities. However, the survey used English terms that are commonly seen in medical literature and the confirmation process was conducted to minimize misunderstanding. Thirdly, the survey data was collected from 2011 to 2013. However, we believe that the characteristics of EMS systems in each city remain similar across this period. The management protocols for patients with OHCA in the prehospital settings in the survey cities did not change much during the research years. Lastly, we did not discuss the use of ALS in this survey.

In conclusion, there are international variations in practices and policies regarding management of patients with OHCA. Most EMS systems in Asian cities do not apply rules of TOR for OHCAs in the prehospital settings. Most cities in this survey have a policy of transporting patients with ongoing CPR to hospitals if ROSC is not achieved after
resuscitation efforts on scene. There is an ongoing need to enhance protocols based on operational feasibility and improved specificity to identify futile resuscitation for wider adoption of TOR rules in Asian EMS systems. There are many concerns regarding prehospital TOR rules that need to be addressed with various stakeholders such as the public, EMS providers, and hospital clinicians in the areas of medical evidence, legal consideration, EMS manpower, public perception, medical oversight, EMT education, EMS characteristics, and cost-effectiveness analysis.

Acknowledgments

The authors sincerely appreciate the contributions of the PAROS group.

References
