
# EMS Research in Taiwan

Chih-Hao Lin, M.D.

#### **Taiwan**

- Population:
  - Density: 23 million
  - OHCA VT/VF: 10 ~15%(Taipei data)
- EMS systems:
  - Fire-based
  - BLS vs. ALS
  - Medical oversight
  - Registration system
    - OHCA
    - Major trauma



#### **Taiwan EMS Research**

EMS Research Domains (by 10M 2006)

| Study Design      | Clinical | System | Education |
|-------------------|----------|--------|-----------|
| Epidemiology      | **       | *      |           |
| Simulation        |          |        |           |
| B-&-A trial       |          |        |           |
| Parallel trial    |          |        |           |
| RCT               |          |        |           |
| Registry Databank |          |        |           |
| Meta-analysis     |          |        |           |

#### **Epidemiology: Descriptive (1)**

- Utility of local EMS
  - Taipei (Hu SC et al, 1996)
  - Keelung (Chen JC et al, 1996)
  - I-Lan (Hu SC et al, 1997)
  - Nan-Tou (Hwang YC et al, 2007)



- Utility by specific groups
  - PED cases: low utility (Loin CY et al, 2007)
  - Characters of frequent ED abusers (Chi CH et al, 2001)

## **Epidemiology: Descriptive (2)**

- Disaster responses
  - Air crash (Lee WH et al, 2002)
  - Chi-Chi Earthquake (Chen KT et al, 2003)
  - SARS (KO PCI et al, 2004)



- Medical needs in mass activities (Kao WF et al, 2001)
- Review of Taiwan's experience and compared with
   U.S. approaches in managing surge needs. (Shih FY, 2005)

# **Epidemiology: Predictive**

- Predictors of OHCA survival
  - Adult non-traumatic OHCA (KO PCI et al, 2004)
  - Pediatric non-traumatic OHCA (Li CJ et al, 2010)
  - Pediatric traumatic OHCA (Lin CY et al, 2007)

Shockable rhythm >> non-shockable in adult Shockable rhythm = PEA>> non-shockable in Ped. Shoter CPR (to achieve ROSC), better outcome.

#### **Clinical: Observation**

- CPR Quality in EMS
  - By AED records

(Ko PCI et al, 2004)

By video records
 (Wang HC et al, 2007)



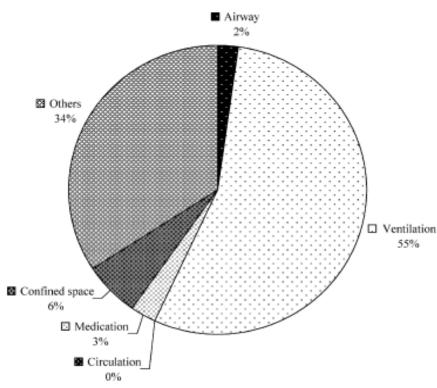
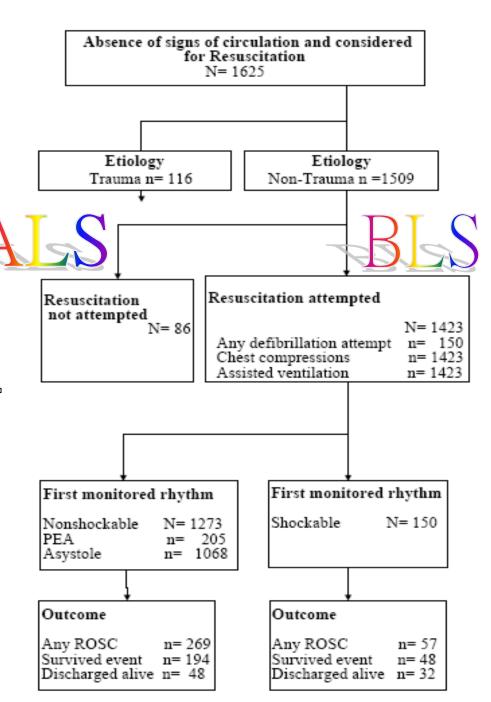



Figure 5 Causes of time lag from ambulance loading to first chest compression in the manual group.


#### **Clinical: Intervention**

- AED impact in Taipei OHCA outcome (Ko PCI et al, 2004)
- Mechanical thumper use in ambulance transport
   (Wang HC et al. 2007)
- ALS: Cost-effectiveness analysis by Taipei OHCA data (Yen RS et al, 2005)
- ALS impact in Taipei OHCA outcome (Ma et al, 2007)
- Clinical trial: Analyzing first vs. Compression first?

(Ma et al, 2010)

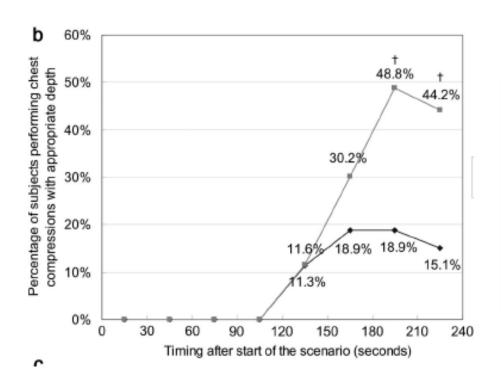
# ALS impact in OHCA outcome in Taipei

During the process of phasing in ALS capability...



#### **Adjusted Odds Ratios for Outcomes**

|                                               | ROSC(%) |           |                                         | Survival to ED/ICU Admission(%) |           |       | Survival to Hospital Discharge(%) |           |      |  |  |
|-----------------------------------------------|---------|-----------|-----------------------------------------|---------------------------------|-----------|-------|-----------------------------------|-----------|------|--|--|
|                                               | OR      | 95%CI     | р                                       | OR                              | 95%CI     | р     | OR                                | 95%CI     | р    |  |  |
| Type of services (ALS vs. BLS-D)              | 1.57    | 1.18-2.08 | 0.002                                   | 1.65                            | 1.21-2.25 | 0.002 | 1.41                              | 085-2.32  | 0.18 |  |  |
| Age group<br>(66+ vs. 0-65)                   | 1.25    | 0.94-1.67 | 0.12                                    | 1.10                            | 0.80-1.51 | 0.57  | 1.32                              | 0.78-2.23 | 0.30 |  |  |
| Gender<br>(Male vs. Female)                   | 0.93    | 0.71-1.23 | 0.63                                    | 1.01                            | 0.74-1.37 | 0.97  | 1.09                              | 0.66-1.79 | 0.74 |  |  |
| Witnessed by Bystander<br>(Yes vs. No)        | 1.12    | 0.86-1.47 | 0.41                                    | 1.03                            | 0.75-1.39 | 0.87  | 1.42                              | 0.89-2.29 | 0.15 |  |  |
| Bystander CPR<br>(Yes vs. No)                 | 1.72    |           |                                         | -/\\/                           | ADAT C    | DED   | ORT                               |           |      |  |  |
| Initial Monitored<br>Rhythm<br>(Shockable vs. | 2.17    |           | C/W OPALS REPORT WHAT MAKES DIFFERENCE? |                                 |           |       |                                   |           |      |  |  |
| Non-Shockable)                                |         |           |                                         |                                 |           |       |                                   |           |      |  |  |


#### **System: Optimization**

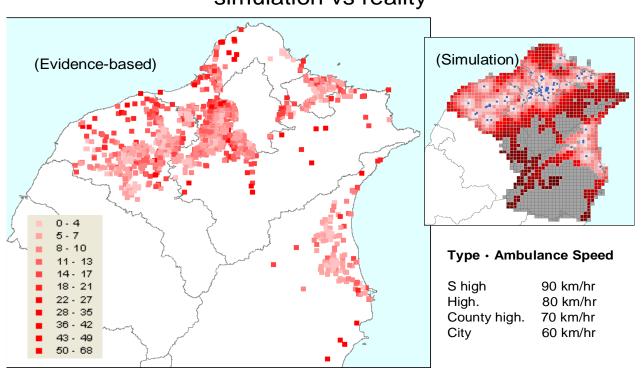
- EMS system evaluation
  - Performance (commutation and accuracy) of dispatcher center (Ma et al, 2007)
  - On-sense triage of traumatic patient by EMTs (Ma et al, 2004)
  - Video-assistant triage of aeromedical triage (Tsai CL et al, 2007)
  - Computer-simulated allocation of ambulances (Shih CL et al, 2001)

#### **Education**

3G mobile phone in dispatcher-instructed CPRQ

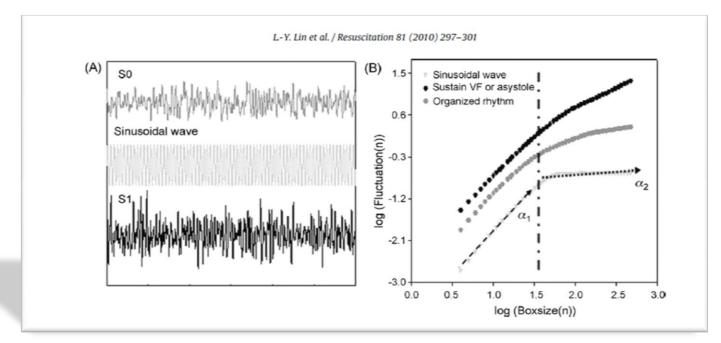
(Yang et al, 2009.)




3G-phone assisted dispatch in online direction of CPR show potential in improving CPR quality.

## **Application of New Technique (1)**

GIS-assisted analysis of accurate EMS times.


(Ko PCI et al, 2009)

Ambulance Transportation Time simulation vs reality



# **Application of New Technique (2)**

- Heart-rate variability (DFA, AMSA,... etc.)
  - Predict of short-term ROSC in OHCA (Chen et al. 2009)
  - Predict of successful defibrillation in OHCA (Lin LY & Ko PCI et al. 2010)



#### **Taiwan EMS Research: SWOT**

- Windows of opportunity
- No need to reinvent the wheel

# Strength

- Public demand increasing
- Frequent disasters and public health emergencies
- Application of new tech

**Opportunity** 

- Data collection infrastructure
- Coordination: between fire and health
- Manpower

#### Weakness

- Rapid progress in neighboring countries
- Stagnation: difficult to change in established systems

Threats