Study proposal

- Mechanical vs Manual compression for pts with OHCA, multi-center RCT -

Kyoung Jun Song, MD, Assistant professor Seoul National University Boramae Medical Center

- OHCA: leading cause of death
 - Only 1-8% of OHCA pts survive to hospital discharge
- Early CPR / high quality CPR
 - Important for cardiac/brain resuscitation

- Load-distributing band(LDB) device
 - Higher intrathoracic pressure than manual compression
 - Study by Ong ME et. al : better survival
 - Study by Hallstrom A et. al : no difference

Use of an Automated, Load-Distributing Band Chest Compression Device for Out-of-Hospital Cardiac Arrest Resuscitation

Marcus Eng Hock Ong, MD, MPH
Joseph P. Ornato, MD
David P. Edwards, MBA, EMT-P
Harinder S. Dhindsa, MD, MPH

Context Only 1% to 8% of adults with out-of-hospital cardiac arrest survive to hospital discharge.

Objective To compare resuscitation outcomes before and after an urban emergency medical services (EMS) system switched from manual cardiopulmonary resuscitation (CPR) to load-distributing band (LDB) CPR.

Table 2. Comparison of Outcomes in the Manual CPR and	LDB-CPR Phases*
--	-----------------

·	Manual CPR		LDB-CPR			
I	No./Total No.		No./Total No. of Patients	% (95% CI)	OR (95% CI)	
	of Patients	% (95% CI)			Unadjusted	Adjusted
Return of spontaneous circulation†	101/499	20.2 (16.9-24.0)	96/278	34.5 (29.2-40.3)	2.08 (1.49-2.89)	1.94 (1.38-2.72)
Survival to hospital admission†	54/485	11.1 (8.6-14.2)	58/277	20.9 (16.6-26.1)	2.11 (1.41-3.17)	1.88 (1.23-2.86)
Survival to hospital discharge‡	14/486	2.9 (1.7-4.8)	27/278	9.7 (6.7-13.8)	3.23 (1.66-6.51)	2.27 (1.11-4.77)

Abbreviations: CI, confidence interval; CPR, cardiopulmonary resuscitation; EMS, emergency medical services; LDB, load-distributing band; OR, odds ratio.

^{*}Both crude and adjusted ORs are presented in the logistic regression models. For the LDB-CPR phase, the total number of patients is not 284 due to missing data.
†Adjusted for differences in response time intervals and percentage of EMS witnessed.

[‡]Adjusted for differences in response time intervals, percentage of EMS witnessed, and whether postresuscitation hypothermia was used. For the unadjusted and adjusted ORs and 95% Cls, a weighted logistic regression was performed.

Manual Chest Compression vs Use of an Automated Chest Compression Device During Resuscitation Following Out-of-Hospital Cardiac Arrest

A Randomized Trial

Al Hallstrom, PhD	
Thomas D. Rea, MD, MPH	
Michael R. Sayre, MD	
James Christenson, MD	
Andy R. Anton, MD	
Vince N. Mosesso, Jr, MD	

Context High-quality cardiopulmonary resuscitation (CPR) may improve both cardiac and brain resuscitation following cardiac arrest. Compared with manual chest compression, an automated load-distributing band (LDB) chest compression device produces greater blood flow to vital organs and may improve resuscitation outcomes.

Objective To compare resuscitation outcomes following out-of-hospital cardiac arrest when an automated LDB-CPR device was added to standard emergency medical services (EMS) care with manual CPR.

Table 4. Logistic Regression of Survival to Hospital Discharge*

	Adjusted for Clustering			
	Univariable OR (95% CI)†	<i>P</i> Value	Multivariable OR (95% CI)†	<i>P</i> Value
Age per y	0.97 (0.96-0.99)	.002	0.98 (0.96-0.99)	.01
PEA to VF	0.28 (0.14-0.55)	<.001	0.36 (0.17-0.75)	<.001
Asystole to VF	0.05 (0.02-0.15)	<.001	0.09 (0.03-0.28)	<.001
Witnessed	5.30 (2.80-10.20)	<.001	2.40 (1.20-4.90)	.02
Site C	3.70 (2.10-6.50)	<.001	3.70 (2.00-7.00)	<.001
Response time of first vehicle/min	0.72 (0.60-0.86)	<.001	0.70 (0.58-0.85)	<.001
Public location	4.00 (2.30-6.90)	<.001	1.80 (0.97-3.40)	.06
LDB-CPR treatment group	0.57 (0.33-0.99)	.045	0.56 (0.31-1.00)	.06

Abbreviations: CI, confidence interval; CPR, cardiopulmonary resuscitation; LDB, load-distributing band; OR, odds ratio; PEA, pulseless electrical activity; VF, ventricular fibrillation.

0.98 for each year of age, decrease by 0.36 if found in PEA than in VF, etc.

^{*}Variables considered but not significant in the models: univariable: days from site start (OR, 1.00 [95% CI, 0.99-1.00]; P = .27 [adjusted for clustering]); before December 28 (OR, 1.50 [95% CI, 0.86-2.50]; P = .16 [adjusted for clustering]); men (OR, 1.40 [95% CI, 0.79-2.70]; P = .23 [adjusted for clustering]); CPR performed by a bystander (OR, 1.40 [95% CI, 0.82-2.50]; P = .21 [adjusted for clustering]); response time of advanced life support vehicle (OR, 0.94 [95% CI, 0.87-1.02]; P = .15 [adjusted for clustering]). Interactions considered: treatment group × days from site start, P = .84; treatment group × site C, P = .12; treatment group × rhythm (with imputed rhythm values), P = .37. †The ORs higher than 1 indicate a higher likelihood of survival and conversely, eg, the odds of survival decrease by

- Common point of two studies : ALS CPR
 - Paramedics, medication, fluid... in field

- It is very different from Asian countries
 - EMT-B or EMT-I / cannot supply ALS
 - Mostly, ongoing compression on ambulance

• How about LDB device in this situation???

Goal

 To compare survival outcomes in patients with OHCA treated either by the LDB device or by manual compression by EMTs

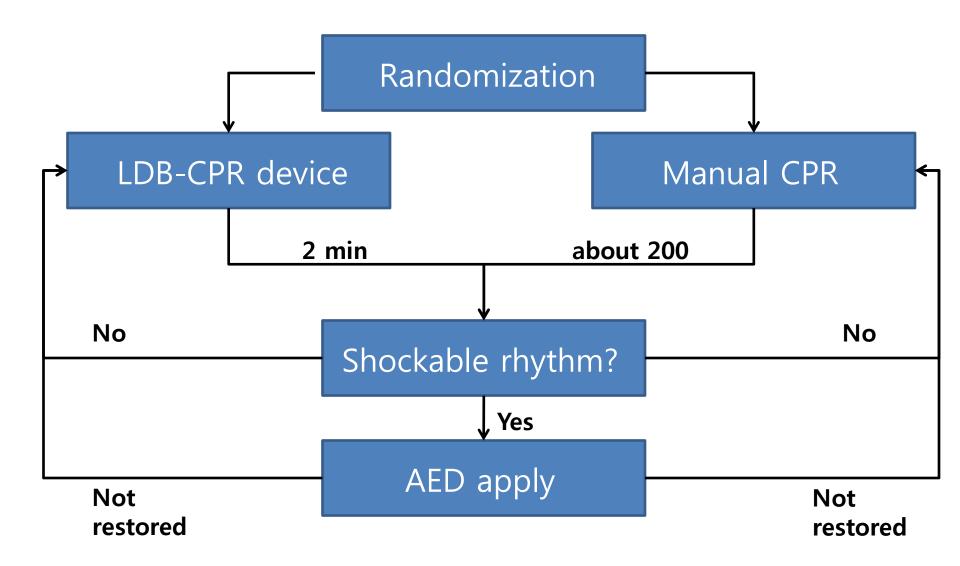
- Under the regulations for exemption from informed consent
- Multi-center
- Multi-country
 - Maybe we need some adjustment

- Any Asian country can participate in
 - BLS single tiered EMS system
 - No paramedics, no ALS management before hospital arrival(except advanced airway, limited medication)
 - EMT-I or EMT-B level

- All ED in this study
 - Should have resuscitation team
 - Should have resuscitation protocol
 - Can collect hospital data easily/precisely

- Case inclusion
 - All EMS-assessed OHCA with presumed cardiac etiology
 - Above 15 yrs

- Case exclusion
 - Cardiac arrest after EMS arrival
 - Noncardiac etiology


- Data collection
 - Fill in common data sheet(based on Utstein style)
 - Share the definition of variables
 - Can be opened web-base

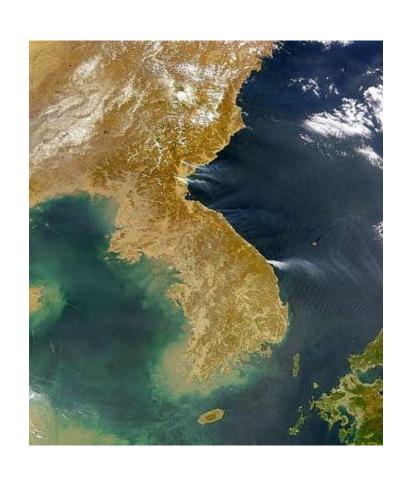
- Intervention: chest compression using LDB device by EMT-I or EMT-B
- Control: manual chest compression by EMT-I or EMT-B

- Cluster randomization with crossover
 - Cluster: group of EMS stations(population base)
 - Crossover: occur at specified time interval(4wks)
 - Avoid simultaneous response
 - Not same period
- Any other effective design can be applied

- Study protocol(intervention group)
 - Pt's upper body clothing should be removed
 - Place patient on the backboard with supine position
 - 8-inch wide LDB(anchored to the backboard) is
 wrapped around the pt's chest(with velcro)
 - Start device-regulated, repetitive shortening

- Run-in period
 - At least 2 months
 - Initial training: hands-on skill practice using the device with a mannequin / video presentation
- Refresher training will not be specified

- Outcome
 - Primary outcome : survival to admission
 - Secondary outcome : survival to discharge
 - Additional outcome : rate of any ROSC


- Sample size
 - Survival to admission: 10% in control group
 - Survival to admission: 20% in intervention group
 - Need 532 pts (power of 90% using a 2-sided test
 with a level of 0.05)

- Statistical analysis
 - Intention-to-treat assignment
 - Logistic regression will be applied
 - Subgroup analysis: based on initial ECG rhythm

Request

- Please, participate!
- Let's overcome many barriers!
- Let's contribute OHCA survival improvement!

Thank you!!!

