

Interpreting Statistical Results

PAROS Literature Review Workshop
11-12 April 2011, Khoo Teck Puat Hospital, Singapore

Dianne Bautista, PhD Singapore Clinical Research Institute

Very important!

- Assess bias before interpreting results. Biased studies mislead.
- The treatment effect is worth considering if study is valid
- ❖ For RCTs of interventions: adequacy of randomization (sequence generation and allocation concealment), blinding (subjects, care providers, assessors), completeness of follow-up, selective reporting

Example: RCT

Does Enalapril lower mortality compared with Hydralazine + Nitrates in men with congestive heart failure?

- Population: Men with congestive heart failure
- Intervention: Enalapril (ACE inhibitor)
- Comparator: Hydralazine + nitrates (H+N)
- Outcome: Mortality

Group	Deaths	Total	Risk of death
Enalapril	132	403	132/403= 33%
H+N	153	401	153/401= 38%

Hypothesis testing with p-values

Null hypothesis:

- There is no difference in the mortality rate
- p-value = 0.11 > 0.05 (level of significance)

Conclusion:

- Do not reject the null hypothesis.
- There is insufficient evidence to show that Enalaparil reduces mortality compared to H+N among men with congestive heart failure.

Remarks on p-values

- Hypothesis testing using a p-value is a binary (Reject/Do not reject Null) decision.
- ❖ Reject Null → "statistically significant"
- p-values do not provide info on direction or size of the treatment effect
- Issue: why make the question of efficacy a dichotomy (Reject/Don't reject) when it may be appropriate to view it as a continuum?

Confidence intervals

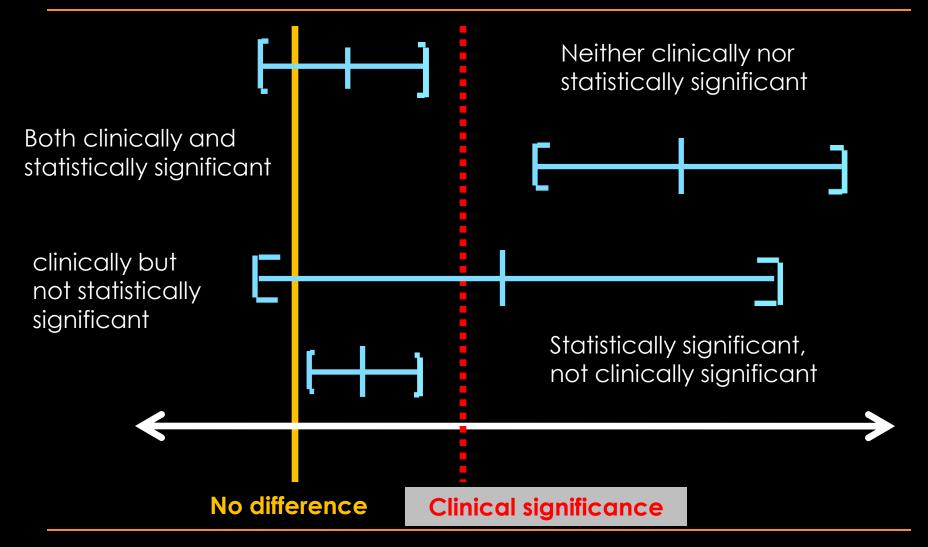
• What is the single value most likely to represent the true difference between intervention and control?

Enalapril: 33%; H+N: 38%

Absolute risk difference: 33% - 38% = -5%

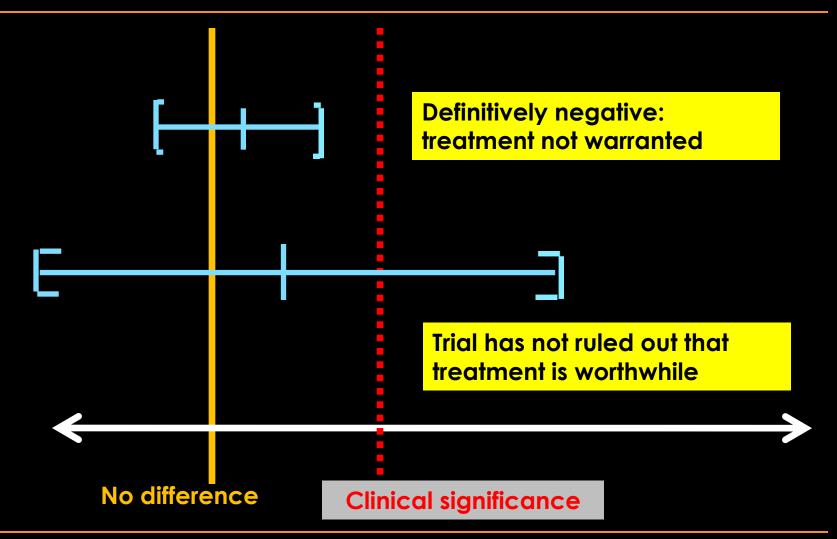
What is the plausible range of differences within which the difference may lie?

95% CI: -1.2% to 12%

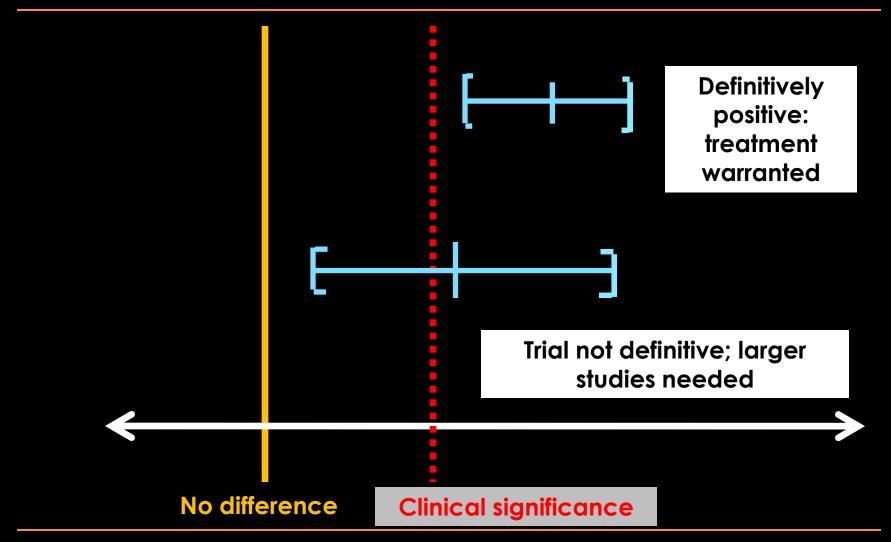

Confidence interval

Conclusion:

- Patients offered ACE inhibitors will most likely (but not certainly) die later than patients given H+N.
- However the size of the difference in expected survival may be trivial or large
- All else being equal, an ACE inhibitor is the appropriate choice for patients with heart failure, but the evidence is not definitive.



Clinical versus statistical significance



Interpreting "negative" results

Interpreting "positive" results

Assessing Effects of the Treatment

- How can we express the magnitude of the relationship between I and O?
 - Binary: risk difference, RR, OR, NNT
 - Time-to-event : hazard ratio
 - Continuous: mean difference
- No treatment effect is expressed
 - Difference = 0
 - Ratio = 1

2 x 2 table

- Binary / Dichotomous outcomes
 - We usually compare the number of patients who experienced the "event"
 - Bad outcomes: occurrence of stroke (Y/N),
 MI, death
 - Good outcomes: resolution of symptoms (Y/N), ulcer healing
 - Even continuous outcomes can be dichotomized: improvement in FEV1 of more than 20% over baseline (Y/N)

Risk Ratio (RR)

Intervention		Number of ients	Total patients	Risk of death			
	Death	Survival	treated				
Int = Ligation	18	46	64	18/64 = 28.1%			
Sclerotherapy	29	36	65	29/65 =44.6%			
Risk ratio (RR) = 28.1%/ 44.6% = 63%							

Risk ratio also known as relative risk

Interpretation: The risk of death after ligation is about two-thirds as great as the risk of death after sclerotherapy.

Risk Difference (RD)

Intervention		Number of ients	Total patients	Risk of death			
	Death	Survival	treated				
Int = Ligation	18	46	64	18/64 = 28.1%			
Sclerotherapy	29	36	65	29/65 =44.6%			
Pick difference (PD) - 16.5% in favor of ligation							

Risk difference (RD) = 16.5%, in favor of ligation

Risk difference is also known as absolute risk reduction or ARR

Interpretation: Treating with ligation rather than sclerotherapy will save the lives of about 16 of 100 patients.

Odds ratio (OR)

Intervention		Number of ients	Total patients	Odds of death			
	Death	Survival	treated				
Int = Ligation	18	46	64	18/46 = 0.39			
Sclerotherapy	29	36	65	29/36 =0.80			
Odds ratio(OR) = $0.39 / 0.80 = 0.49$							

Odds = "piece of the pie" / "rest of the pie"

Interpretation: The odds of death after ligation are half the odds of death after sclerotherapy

RR vs OR vs RD

- Consider two cases with RR=33%
 - Case 1: reduction of risk from 3% to 1%
 - Case 2: reduction of risk 60% to 20%
- But clinical implications may be different if 5% of patients experience side effects
 - Case 1: therapy not worth instituting
 - Case 2: trade-off worthwhile
- Whereas RD gives info on absolute risk, RR and OR do not
- RD and NNT, may be most useful for deciding whether to institute intervention or not

Number needed to treat (NNT)

Intervention		Number of ients	Total patients	Risk of death			
	Death	Survival	treated				
Int = Ligation	18	46	64	18/64 = 28.1%			
Sclerotherapy	29	36	65	29/65 =44.6%			
NNT = 100/16.5 ≈ 6							

Risk difference is also known as absolute risk reduction or ARD

Interpretation: We need to treat 6 patients with ligation to prevent one death

Meta-analyses

- What is a meta-analysis?
 - ✓ Statistical synthesis of results from a series of studies.
 - ✓ Optional part of a systematic review
- Why perform a meta-analysis
 - ✓ To increase power
 - ✓ To improve precision
 - ✓ To answer questions not answered by individual studies
 - ✓ To settle controversies arising from conflicting studies.

Framework for synthesis

- 1. What is the direction of the effect?
- What is the size of the effect?
- 3. Is the effect consistent across studies?
- 4. What is the strength of evidence for the effect?

Heterogeneity

Clinical heterogeneity

Participants

✓ Age, sex, co-morbidities, disease severity, medication status at start, eligibility criteria, geographical variation

Interventions and Comparators

✓ Dose, duration, type of drug, mode of administration, nature of control (none, placebo, standard care)

Outcomes

✓ follow-up duration, definition of an event, ways
of measuring outcomes

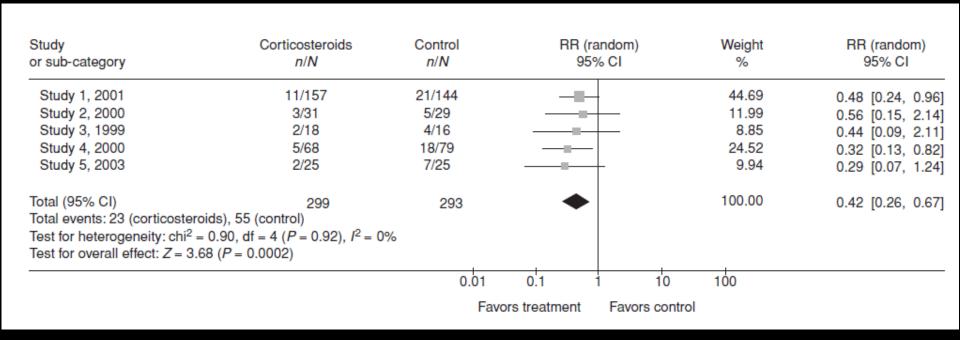
Heterogeneity

Methodological heterogeneity

Study design

✓ Randomized vs. non-randomized, parallel group vs. crossover, individual vs. cluster randomized

Conduct


✓ Allocation concealment, blind outcome assessment

Analysis

✓ ITT vs per protocol, unit of analysis, imputation methods for missing data

Forest plot

Example

Focused question: In adults who achieve ROSC following cardiac arrest, does the administration of therapeutic hypothermia (intervention) increase the rate of survival to hospital discharge compared to supportive care?

Search strategy:

MEDLINE and EMBASE: (heart arrest OR cardiopulmonary resuscitation) AND (hypothermia, induced OR circulatory arrest, deep hypothermia induced)

Example

Study	Treatment n/N	Control n/N	RR (95% CI fixed)	Weight %	RR (95% CI fixed)
Bernard	22/43	23/24		23.7	0.76 [0.52, 1.10]
HACA	50/136	69/137		63.5	0.73 [0.55, 0.96]
Hachimi-Idrissi	13/16	13/14		12.8	0.87 [0.66, 1.15]
Total (95% CI)	85/195	105/185		100.0	0.75 [0.62, 0.92]
Test for heterogeneity	chi ² = 1.15, df = 2,	P = 0.56	•		
Test for overall effect:	Z = 2.79, P = 0.005				
		.1	.2 1	5 10	
		Favor	s treatment Favors	control	

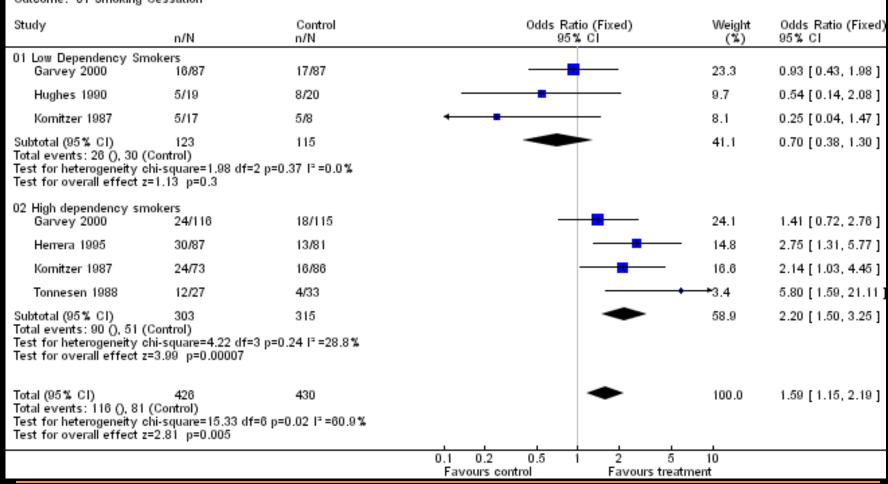
Comparison of in-hospital mortality between patients treated with mild hypothermia and control groups in three clinical trials

END

Analysis I.I. Comparison I Exercise versus no intervention - general population, Outcome I Anxiety.

Review: Exercise in prevention and treatment of anxiety and depression among children and young people

Comparison: I Exercise versus no intervention - general population


Outcome: I Anxiety

	Tre	Treatment Control			Std. Mean Difference		Std. Mean Difference				
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% C	l IV, Randoi	n, 95% CI	
Smith 1983	35.69	8.06	16	0	7.31	16	13.4%	4.52 [3.15, 5.89]	-	
Roth 1987	36.8	8.9	18	37	9.1	18	17.2%	-0.02 [-0.68, 0.63	1] 📑	-	
Jacobs 1984	30.77	7.68	22	38.23	8.47	22	17.3%	-0.91 [-1.53, -0.28	·]		
Hilyer 1982	29.17	4.39	23	39.1	6.96	20	16.9%	-1.70 [-2.41, -0.99]		
Carl 1984	32.12	7.78	15	34.13	4.92	16	16.9%	-0.30 [-1.01, 0.41] -	-	
Berger 1988	6.49	6.3	66	8.64	7.37	87	18.3%	-0.31 [-0.63, 0.01] -		
Total (95% CI)			160			179	100.0%	0.05 [-0.89, 0.99	1	•	
Heterogeneity: Tau² = 1.22; Chi² = 66.60, df = 5 (P < 0.00001); l² =						001); l²	= 92%		-10 -5 C	1 5	
Test for overall effect: $Z = 0.10$ (P = 0.92)									Favours experimental	_	10

Review: Nicotine replacement therapy for smoking cessation Comparison: 02 Effect of 4 mg vs 2 mg Nicotine Gum

Outcome: 01 Smoking Cessation

