

Focused Research Questions and Study Designs

PAROS Literature Review Workshop 11-12 April 2011, Khoo Teck Puat Hospital, Singapore

Dianne Bautista, PhD Singapore Clinical Research Institute

11-12 April 2011

PAROS Literature Review Workshop

Outline

✤Part 1

- Types of research questions
- The PICO / PEO structure

Part 2

- Overview of Research Designs
- Experimental design: RCT
- Types of Observational designs
 ✓ cohort, case-control, cross-sectional

SINGAPORE CLINICAL RESEARCH

The Structure of Research

Start broad. Narrow down, focus in. Operationalize. OBSERVE Analyze data. Draw conclusions. Generalize to target population.

PART 1

Elements of a focused research question

"In good science, questions come first. Science is just a tool for answering those questions."

--John Bargh

- In hospital EDs how is overcrowding defined? Descriptive
- In a patient with a chronic disease seen in the ED, what is the relationship between literacy and medication adherence?
 between medication adherence and return ED visits? Analytic
- What are the effects of biphasic defibrillation waveforms compared to monophasic for resuscitating patients experiencing OHCA? Analytic

The PICO/PEO structure

♣ All studies have

- a defined population from which subjects are studied
- Outcomes that are measured
- For analytic or experimental studies
 - Interventions or
 - Exposures that are applied to different groups

SINGAPORE CLINICAL RESEARCH INSTITUTE

Focusing the question

	Patient or Problem	Intervention /Exposure	Comparison (if necessary)	Outcomes
Ex 1	Hospital ED settings			Measures of overcrowding
Ex 2	patients with asthma	secondary school completers	Non- completers	Improper use of MDI (correctly performing <3 of6 steps in inhaler usage)
Ex 3	Adults experiencing OHCA of presumed cardiac origin with VF/VT as presenting rhythm	Biphasic waveform defibrillatio n pulse	Monophasic	Primary: Overall rate of ROSC Secondary: survival to hospital discharge

Stating the hypothesis

 Biphasic waveform defibrillation pulse increases the overall rate of ROSC by 20% compared to monophasic in adults experiencing OHCA of presumed cardiac origin.

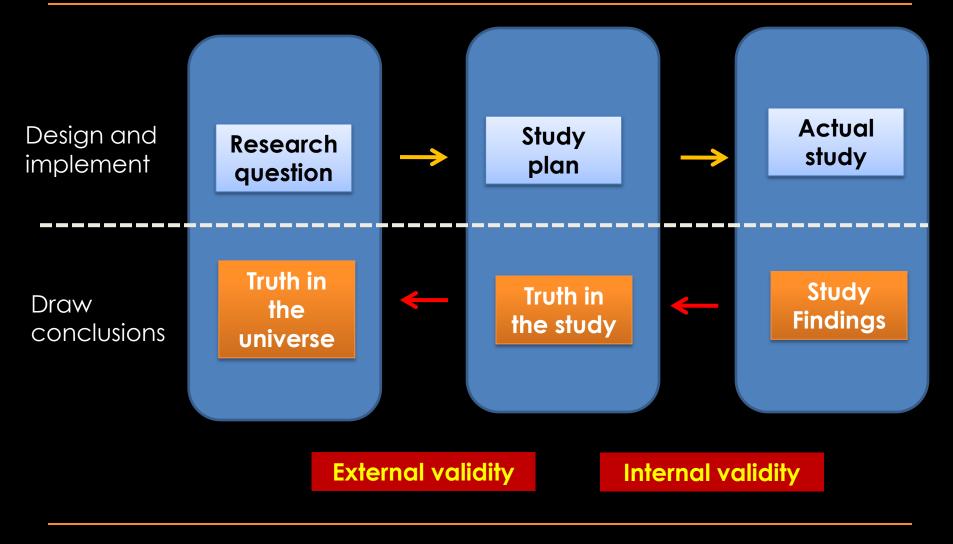
What is the LWBS rate in the SGH A&E in the last quarter?

Rules and principles

Keep the research question focused

State the problem clearly and completely

If there are multiple questions, subcategorize as primary and secondary questions


Part 2

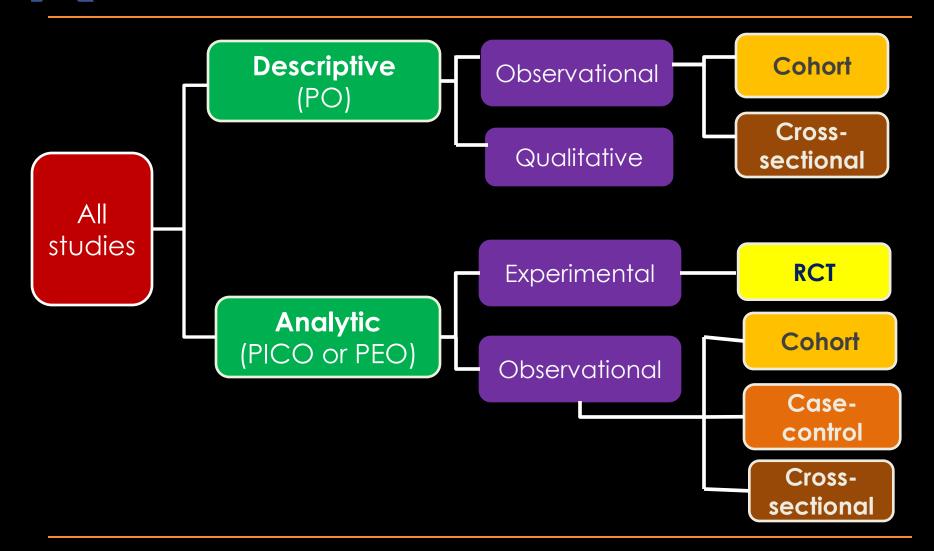
Study Designs

"100% of all disasters are failures of design, not analysis." -- Ron Marks, Toronto, August 16, 1994

External and internal validity

SINGAPORE CLINICAL RESEARCH INSTITUTE

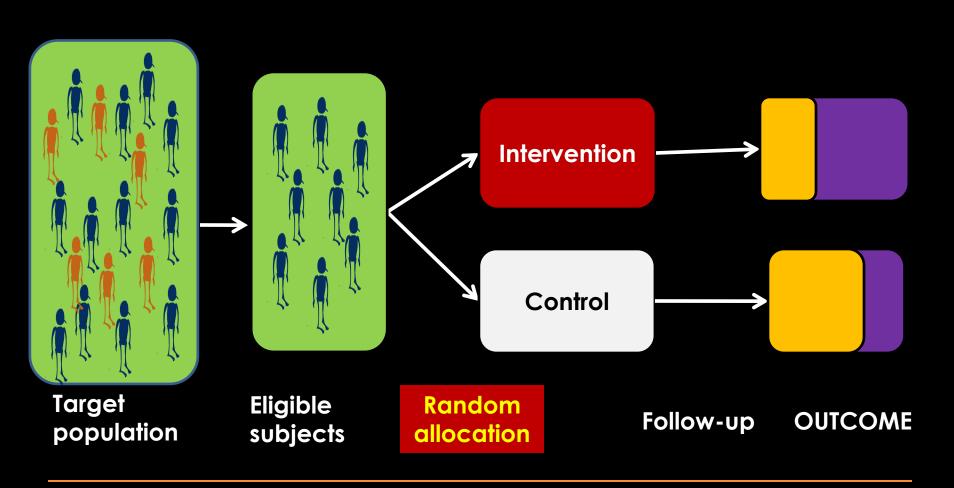
Random and Systematic Errors


Random errors

Sources: sampling and measurement

* Bias

- Sources: selection, confounding, measurement
- Example: Study of Anti-hypertensive treatment
 - Random error: variation in BP due to variable observer technique (observer)
 - Systematic error: BP increase due to proximity to attractive technician (subject)


Overview of Research Designs

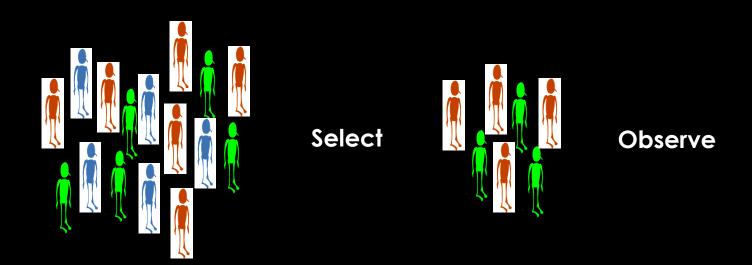
CLINICAL

Singapore CLINICAL RESEARCH INSTITUTE

A Typical RCT

Confounder

- A variable that is known to relate with the outcome of interest
- Differentially distributed between comparison groups
- Example:
 - Outcome: death from trauma
 - Comparison groups: Consultant versus junior house officer
 - If % of severe cases in consultant group is higher than in junior house officer, then the severity factor is a confounder

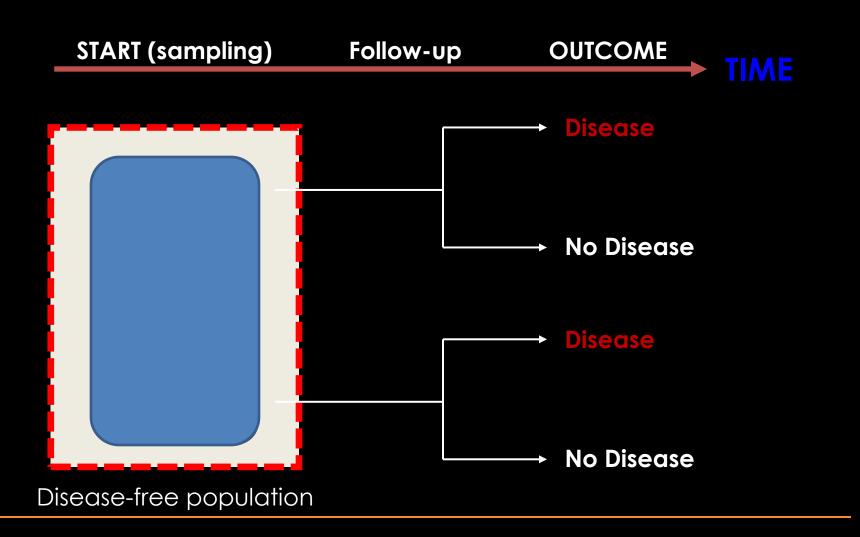

RCT is the gold standard

- But not always best to perform
 - Unnecessary
 - ✓Penicillin for bacterial infections
 - Inappropriate
 - Accident prevention schemes
 - ✓HRT to prevent femoral fractures
 - Impossible
 - ✓ Ethical issues
 - Inadequate
 - Surgery (where low external validity of results is likely)

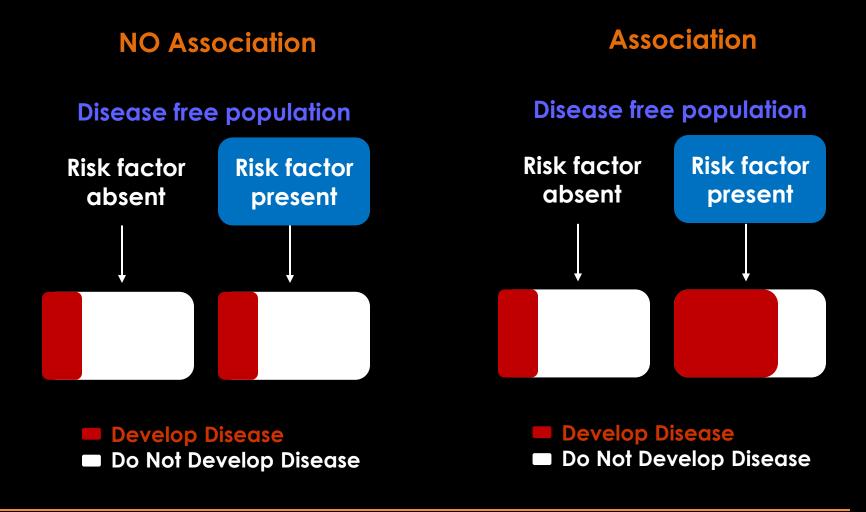
Observational Designs

A researcher does not manipulate in any way the conditions under which the study is performed

Descriptive or analytic

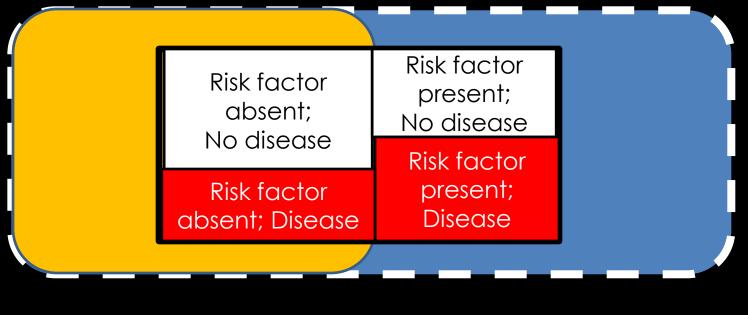


Cohort study


- A cohort is a group of individuals who share a common experience or condition or characteristic
- A cohort study involves the follow-up of at least one exposed and non-exposed cohorts to determine the causal effect (etiology) of exposure on a future event
- Cohort with the characteristic ==> exposed cohort

Prospective Cohort study

- Which risk factors predict 28-day mortality in elderly ED patients admitted for infection?
- How do 3 ankle rules: Ottawa Ankle Rules, Low risk Exam and Malleolar Zone algorithm compare in predicting fractures in children with acute ankle trauma?
- In non-traumatic adult OOHCA patients, does ETI improve survival-to-hospital discharge when compared to BVM?


Plus

- Suitable to describe incidence or natural history of a condition
- Measurement of exposure before the outcome controls bias in measurement
- Possible to collect multiple exposures
- * Minus
 - Can be expensive
 - May take decades to complete
 - Losses to follow-up may invalidate results

Cross-sectional studies

 Both the exposure and the outcome are assessed at the same time

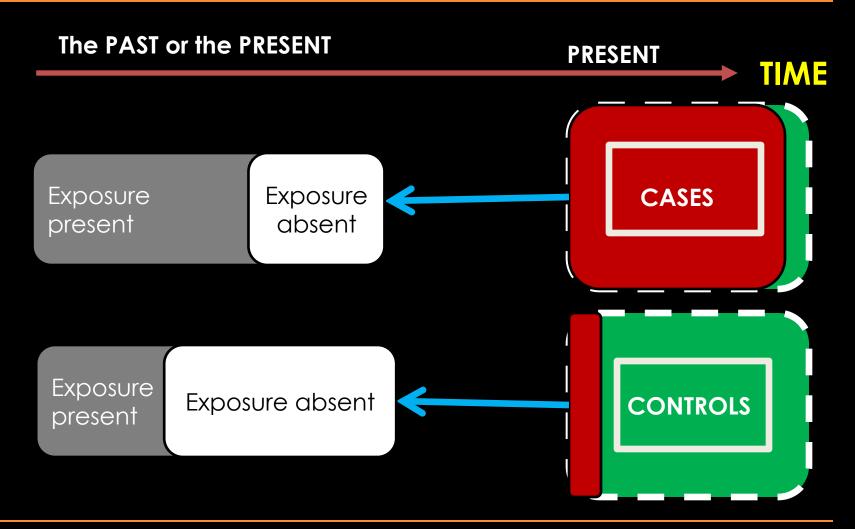
Risk factor absent

Risk factor present

- What is the national LWBS rate in Singapore in 2010?
- What are the characteristics of non-urgent patients seeking medical attention at an ED?
- How reliable is the clinical examination of ED physicians in the diagnosis of SSTIs?
- What is the prevalence of anxiety and depressive disorders in patients presenting with chest pain to the Emergency Department (ED)? Does the prevalence differ between cardiac and non-cardiac chest pain?

Strengths and Weaknesses

Plus


- suitable for assessing prevalence of a disease or outcome
- Avoids time, expense, and drop-out problems of a follow-up design

- Cannot be used to assess causality
- Cannot determine incidence
- Mainly descriptive

Case-Control studies

- What features discriminate between SARS and severe non-SARS community-acquired viral infection in an ED setting?
- What factors predict laryngospasm during ED ketamine sedation in children?
- Is sleeping position associated with an increase in cot death (a.k.a. SIDS)?

Strengths and Weaknesses

Plus

- sensible for study of rare, harmful outcomes
- Reasonably economical
- No loss to follow-up
- Minus
 - Uncertain if exposure preceded disease
 - Potential for recall bias
 - Selection bias
 - Unable to estimate disease incidence

SINGAPORE CLINICAL RESEARCH

Pros and Cons of study designs

Study Design	Advantages	Disadvantages
RCTs	Unbiased distribution of confounders	Expensive; may be ethically problematic
Cohort studies	Establishes sequence of events, multiple predictors and outcomes, yields incidence, relative risk	Often requires large sample sizes; less feasible for rare or harmful outcomes; losses to follow-up
Cross- sectional	Yields prevalence or multiple predictors and outcomes; relatively short duration; good first step for cohort or RCT	Does not establish sequence of events; not feasible for rare outcomes; does not yield incidence
Case- control	Useful for rare outcomes; short duration, small sample size, relatively inexpensive	Bias and confounding from sampling from two populations; differential measurement bias; limited to one outcome variable; sequence of events unclear

SINGAPORE CLINICAL RESEARCH INSTITUTE

Matching questions to study design

Р	I &C	Ο	Study design	Торіс
Adults with migraine headache in the ED	Metoclopramide vs systemic DHE	Pain relief and relapses after discharge	RCT	Therapy
Adults with new onset COPD	Exposure to work- related or environmental irritants	Development of COPD	Prospectiv e cohort	Etiology
Adults in the ED with acute swollen leg and chest pain	Use of Well's criteria vs unstructured clinical exam	Diagnosis of DVT/PE	Prospectiv e cohort	Diagnosis
Infants	Sleeping position	Cot death	Case- control	Harm

Which study design?

- Is the study design ethical?
- What resources do I have
 - Time
 - Money
 - personnel

Is there a more efficient way of reliably answering the same question?